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The problem of one-dimensional piston which at the beginning moves with in- 
creasing velocity into a gas at rest, then is decelerated, and finally stops, is 

solved by means of special series. The gas flow field is constructed by a suc- 
cessive joining of three characteristic Cauchy problems in terms of their charac- 

teristic solutions. Generalized solution of the problem of instantaneous arrest 

of the piston is derived. Obtained equations are used for the approximate cal- 

culation of the motion of generated shock waves. 
Representation of solutions of certain boundary value problems for nonlinear 

equations of the hyperbolic kind in the form of special series was proposed in 

[l, 21. The problem of the piston moving into a gas at rest is solved there, and 
the obtained solution was used for an approximate determination of the gene- 

rated shock wave. The piston velocity was assumed to be monotonically increa- 

sing. That problem is solved here with the use of similar series in the case when 

the piston velocity is nonmonotonous, 

Numerical methods make it possible at present to determine one-dimensional 
flows similar to that considered below, and multidimensional problems can be 

solved by the method proposed in [l, 21. The use of the proposed scheme for 
solving the problem of the multidimensional piston, whose. velocity is nonmono- 

tonous, does not present theoretical difficulties, but except that the formulas 

are more cumbersome. 

1, One-dimensional isentropic flows of perfect polytropic gas are considered. The 
potential of these satisfies the equation 

0’11 + 2q,g,, + (cDx” - c”) am - (i - 1) c2 2 = 0, x>o 

c2 L- (y - 1) (M - Q - v2 a),,“), M = 1 / (y - 1) 

where c is the speed of sound, y > 1 is the adiabatic exponent, and i = j , i = 2 
and i = 3 relate, respectively, to plane, cylindrical, and spherical symmetry. 

Let an impermeable piston begin to penetrate at instant of time t = 0 into a homo- 
geneous quiescent gas in conformity with the law 5 = x1 (t) , and 

x1 (0) = R, > 0, XI’ (0) = 0, XI” (0 > 0, 0 <,ct < t, (1.1) 

A surface of weak discontinuity begins to propagate through the quiescent gas. This 
discontinuity is a characteristic which separates the region of the quiescent gas from 

that of its perturbed flow. A characteristic Cauchy problem (problem 1) is obtained: 
along the characteristic are specified the initial conditions: the homogeneous gas is at 

rest, and along the line 5 = x1 (t) the boundary condition 
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% (Xl (6, t) ‘= Xl’ (4 Cl.21 

which is the corollary of the piston impermeabi~ty. 
From the instant t, the piston begins to penetrate the gas in conformity with the law 

CT = x2 (t), and 
x2 (G) = Xl w7 X8' (4) = Xl' @I> 

X*"(f) < 0, tl< tsg $2; x2' (&2> = 0 

One more weak d~continulty surface is generated in the perturbed flow, which is com- 

pletely determined by the solution of problem f. The specified flow of gas on one side 

of that characteristic and the boundary condition at the piston, similar to condition (1.2), 

also constitute a characteristic Cauchy problem (problem 2). 
At the instant of time t = ta the piston stops, hence x = xs (t)_ = const, one more 

weak discontinuity determined by the solution of problem 2, is generated. By specifying 
on the latter the initial conditions from the solution of problem 2 and on the piston 

conditions of the kind (l-2) we obtain one more characteristic Cauchy problem (prob- 

lem’ 3). 

2. Bar the successive solution of the three problems formulated above we pass, as in 
[l, 21, to new independent variables r and L , and to the new unknown function Y by 

the Legendre ~a~ormation u’ ‘= rx + Mt - @ whose Jacobian is J = Yy,Vr,,. As 
the result, we obtain for W the equation 

Yt,Y,, - Yrt + 2rY?,, - r2 -+- c2 + (i - l)re2+ = Q (2.1) 
+ 

c2 t=: (y - 1) (Y, - l/f2 r-Z)* (2.2) 

The corollary of Legendre reformation are the formulas 

x = FtIr,, T = @ 5, y,, I= 1 / @xx (2.3) 

The characteristic Cauchy problem for Eq, (2.1) is generally formulated as follows. 

Let in some region l’ of the plane dOr the solution of Eq. (2.1) be specified by 

y Cr.7 Q = f (r+, t> (2.4) 

and let point (t = t,, r- ‘- rO) belong to I?. Then the characteristic f - sp (t) ti 0 

solution (2.4) which passes through the specified point satisfies the equation and the ini- 
tial condition 

iftt (9, 0 + (i - ii CP (Y - 1) 6 (CP, t) - iI2 (~7 If, (CP, 01 - (20~) 

1% - x, 6% 01 cp8 f VW (cpl 01 cp’i4 = 07 cp (to) = r.0 

Let us assume that problem (2.5) has a solution. If there are two of these, we select the 
one that conforms to the physical meaning of the problem, 

We introduce new independent variables z = r - cp (t) and Z = f which means 
that the characterisfic is taken as one of the coordinates. Equation (2.1) now becomes 

fY.ZZ - + &, + cptz yv,, - ‘p” ‘YJ YS - (Y,, - (2.6) 

9?‘%)a + 2 fz + 9) P*r - cp”u,,) - (2 + Fpjs + (y - 1) x 

W, - cp’Yy, - ‘4 (2 + cp)“) + (i - f) (Y - 1) (2 + 9) (YT - 
0’ Yz - va (2 + cpy) Yy,, /Y, -- 0 
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for which the initial conditions are 

y (0, 4 = f (cp (47 +7 yz (07 4 = f, (cp (71, z> (2.7) 

The boundary condition for the characteristic Cauchy problem (2.6), (2.7) is obtained, 

as in [3], from the relationship 

x (r) * yy, (2, 7, IZ = X’(+)-QP(r) (2.8) 

Equation (2.8) follows from formulas (2.3) and the condition of impermeability of the 
piston moving in conformity with the law z = x (t). Differentiation of (2.8) with re- 
spect to z and the introduction of function ?j inverse of Xf - cp yield for the charac- 

teristic Cauchy problem (2.6), (2.7) the boundary condition 

y’,, Ln (2) = rl’ (4 Ix’, rl(4) - yf=ZTl L(s) (2.9) 

To satisfy Eq. (2.9) in the neighborhood of point (T = t,, z = 0) it is necessary to 

specify the condition 
x” (GJ - cp’ (&I) # 0 (2.10) 

The solution of the characteristic Cauchy problem (2.6), (2.7),(2.9) is sought in the 

form of series in powers of 2 

k=O 

Then T, and T, are determined by (2. ‘i), and T, and Tk (k > 3) satisfy the equations 

BT,’ + CT,= + DT, $ E = 0 (2.22) 

BTk’ + DJk + Ek == 0, k = 3,4, . . . 

B =2 - 2 (T,’ (T) - cp (z)) 

where C, Dt and E are known functions of ‘t when T,, . . . , TL-1 are known. If in the 
space of variables x and t there are no points on the characteristic x = E (t), which 

corresponds to characteristic z = 0, at which the speed of sound is zero, then B # 0 
since it follows from formulas (2.3) that 

+MPW, r)l = & [E(~)lY v(r) = @X(E(~)? r) 

For fairly small t we have in the piston problem B#O in all three characteristic 
Cauchy problems. 

Initial conditions for Eqs. (2.12) are obtained from formula (2.9). The convergence 

of series (2.11) in some neighborhood of points (z k to, z = 0) follows from the the- 

orem proved in [S]. 

3. Solutions of the characteristic Cauchy problems specified in Sect. 1 are as follows: 

In problem 1 [l, 21 

2 = r, ‘4 (0, t) =.z K + t / (y - i), Y, (0, t) = t + I?,, K = const (3.1) 

Formulas (1.1) ensure that conditions (2.10) are satisfied in problem 1. 
For i = 3 the solution was derived in [2], for i = 2 it appears in [l], and for i= 1 

the solution of problem 1 is of the form 
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c, s const, k), 2 

To solve problem 2 it is necessary to construct the characteristic r = w (t) begin- 

ning at point (f t- t,, r = x1’ (tl) ) using the solution of problem 1. For fairly small 
tl and x1’ ($) Eq. (2.5) has two solutions: (Pan’ (tJ > 0 and cp12’ (t,) < 0. Since 
for t > t, the piston is decelerated, we select for ‘p1 (t) the second of these solutions. 

For i=ll we have ‘pl (t)=~~’ (Q. For i = 2 and i = 3 Eq. (2.5) was solved 

numerically, using finite segments of infinite series 

3 Tk@) 

z klZ 
p 

(3.3) 
k=O 

Having constructed (pl (t) we select xz (t) so that the condition similar to (2.10) is 

satisfied for t = t, . 

For i = 1 the solution of problem 2 is as follows: 

(f- - Q2 i- jj3 Ck2 (r - rdk 
r, = x1’ (tl). Ck2 = const, k > 2 

For solving problem 2 for i ‘--- 2 and i = 3 finite segments of (3.3) were taken in- 

stead of solutions of problem 1, and Eqs, (2,X2) were solved numerically. 
To obtain the solution of problem 3 it is necessary to construct the characteristic r .:: 

cp2 (t) for the solution of problem 2, beginning at point (t = tz, I” == C). For fairly small 

t, and X1’ (tl) Eq. (2.5) has two solutions: Q~’ (t,) ( ~~~~ (tz) < 0. We select cpz2 (t) 
for (p2 (t) , since the selection of qel (t) woula result In that in the flow restored to the 

physical plane the characteristic “propagates” with increasing time into the piston in- 

stead of into the gas. 
For i == 1 we have cpz (t) = 0, and, since x3 {t) = ~~n~t,condition (2.10) is not 

satisfied, and it is not possible to construct a solution of problem 3 in the space of vari- 
ables r, t , If problem 3 is analyzed in the space of variables 3, t, then it follows 

from (3.4),(2,2) and (2.3) that the characteristic which separates the solutions of prob- 
lems 2 md 3 is a straight line, Along that line u = 0 and p = p. = const, where 
p. is the density of gas at L = 0. Thus problem 3 is defined by 

Qt + up, + pu, = 0, put + mu, + py--Ipx = 0 

U=O, p=po ontheline z=t-t2+X,(t,) 

u=o for z=&(t,) 

(3.5) 

It can be shown that problem (3.5) has the single analytic solution 

U = 0, p = po (3.6) 

Thus,(3.2),(3.4) and (3.6) solve the input problem of the piston. Solutions (3.2) and 
(3.42 represent simple waves [4]. 
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For i = 2 and i = 3 we have ‘ps’ (ts) < 0. Equation (2.5) was solved numeri- 
cally. Its finite segment (3.3), determined by the segment (3.3) of the solution of prob- 
lem 1, was substituted for the solution of problem 2. 

The results of computations carried out for 

x1 (t) = i + Vats - &lets, t, - V, 

x.2 (t) = x1 (&) + x1’ (4) (t - 4) - l/s (t - VT t2 = Y* 

are shown in Figs. l- 3, where lines denoted by small circles, black dots, and those 

-0.8 

Fig. 1 

without these relate to i = 1, i = 2 and 
i = 3 , respectively. 

Fig. 2 

P 

L 06 

Functions ‘pl (t) and ‘ps (t) are re- 
presented in Fig. 1 by the upper and 

lower bunches of solid lines, respectiv- 

ely, and the dash lines relate to x1’ (r) 
and xs’ (t). 

Curves of gas velocity U and den- 
sity p determined by (3.3) of the so- 

lution of problem 3 are shown in Figs. 
2 and 3 for instances of time t = 0.55 

Fig. 3 
“at the limit” the problem of instan- 
taneous piston arrest. Solution of the 

“limit” problem in the space of variables j: and t is difficult, hence the transition to 
limit t, -+ t, is considered in the space of variables r and f. 

The boundary condition for problem 2 is of the form 

Yy,, (r, q2 (4) = 112’ @I [r - YY,, k’, rlz (r))l (4.1) 

where x is an inverse function of xs’; q2 (rr) = t,, Q (0) = t2 and Fl = XI’ (rr). 
When t, + t, , q2 tends to merge with the straight line t = t, , and condition (4.1) 



1006 S. P. Bautin 

becomes 

Problem 2 with boundary condition (4.2) instead of (2.9) has no singularities and has 
also an analytic solution. Because of this, a singularity of the flow can only occur at 
points where J L 0 , which specifically happens when t = t,. Since T, satisfies in 
problem 2 the nonhomogeneous equation, there exists a tl’ > tr such that T, (t) # 0 
when t, < t < t,‘. Consequently, the flow in some neighborhood of the characteristic 
in the physical space has no sin~l~ities for tr < t < iI’ , 

The derived general solutions for i = 1 represent a centered rarefaction wave,while 
for i = 2 and i = 3 they resemble a centered rarefaction wave. 

6, With increasing time infinite gradients begin to appear in the solution of problem 
1, a shock wave is generated, and its isentropic property is violated. The place and time 
t = t, of shock wave generation can be determined with the use of the solution of prob- 
lem 1 [l. 21. 

If the shock wave is weak, it can be approximately assumed that the flow behind it is 
isentropic and potential. The solution of problem 1 can be used for the approximate 
determination of the motion of the generated shock wave and for defining the flow of 
gas downstream of it [l, 21. If R (t) defines the ilow of gas at the shock wave,the equa- 
tion 

y,r (R (0, t) R’(t)+%, (R @>, 9” -q+?(t) +I/q%l’(t)+1 (5.1) 

which is the corollary Hugoniot’s condition [4]. is valid, Equation (5.1) can be solved 
numerically by substituting segment (3.3) for Y . 

The characteristic which separates the solutions of problems 1 and 2 catches up with 
the shock wave at some instant of time t = t,, , It is assumed that in that case the 
result of the interaction between the weak discontinuity and the shock wave is only a 
shock wave that propagates over the quiescent region. Then for the approximate deter- 
mination of shock wave motion beginning at t = t,, we use the solution of problem 2 
and in Eq. (5.1) we substitute (3.3) of solution of problem 2 for Y when t > t*, , 

Note. In the exact solution the interaction between a weak d~ontinui~ anda shock 
wave results not only in a shock wave propagating through the region at rest but, also, 
in a weak discontinuity penetrating the interior of the flow. However, the use of isen- 
tropic potential flows for approximately defining the motion of gas behind the shock 
wave leads to the following. A weak discontinuity that propagates in the interior of 
flows yields the characteristic Cauchy problem whose solution is nonunique and is repre- 
sented by a line along which the boundary condition (which ensures uniqueness) is speci- 
fied. That characteristic can only be known, if the law of motion of the shock wave is 
known. If the new characteristic Cauchy problem is disregarded, the shock wave motion 
is uniquely defined by the solution of the related differential equation. The interaction 
between a weak shock wave and a rarefaction wave catching up with it is approximately 
defined in [4] as follows: the generated weak discontinuity is d&regarded, and the flow 
behind the shock wave is defined by the initial rarefaction wave, and the position of the 
shock wave is uniquely determined by the solution of the related differential equation. 

Shock wave motion computed for i = 3, Xi (t) * 1 + r/s t2 - 1.28 ta / 6 and 
tr L tz L “i4 are represented in Fig.4 (parameter p - 1 is close to U and is not ad- 
duced here), 
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Beyond the solution of problem 2 the gas is at rest for i L 1 . For i = 2 and i = 
3 it is not so, and there exists an 
instant of time at which a,, in 

R u 

~~~ 

the solution of problem 3 becomes 
infinite, This may be treated as 

o.ou the appearance of the rear bound- 
ary of an N -wave [4]. It is not 

0.08 0 clear at present which solution is 

-ll.llU 
to be used for defining the flow - 

4.6 5.0 5.0 5.8 x between the rear boundary of the 

a.04 
N-wave and the piston. Hence it 
is impossible to state anything 
about the position of that boundary, 
except that it will not reach that 

0‘ 
point of the flow which is defined 

t* t, 4 8 12 t by the solution of problem 2,where 

Fig. 4 
u = u. 

In concluding the author thanks 
A. F. Sidorov for his scientific guidance and assistance. 
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